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Catenanes and rotaxanes continue to attract much attention either
as synthetic challenges1 or in relation to functional compounds and
materials.2 The field of controlled dynamic systems, often referred
to as “molecular machines”, seems to be particularly important
since, potentially, practical applications may be discovered for these
molecules or molecular assemblies, for example in the field of
information storage and processing.3 The templated synthesis of
2-component catenanes and rotaxanes has revealed remarkably
efficient, either based on transition metals4 or on organic templates.5

Several examples of topologically more complex molecules have
also been reported, some of them being prepared in an efficient
way from several precursor fragments.6 Among them, [n]rotaxanes
(n > 2) represent a subclass of interesting compounds.7a [n]-
Rotaxanes generally consist ofn - 1 rings threaded on the same
thread,7b as in the case of cyclodextrin-based rotaxanes.7c As far as
we know, most of the systems with more than one thread passing
through the ring(s) are restricted to nonstoppered inclusion com-
plexes,8 whereas only one example of real [3]rotaxane has been
reported.8d We would now like to report that the use of an octahedral
transition metal as template allows high yield synthesis of two-
string [3]rotaxanes.

The metal is used in a novel “gathering and threading” approach,
leading to a doubly threaded structure, which represents a gener-
alization of the previously reported principle based on copper(I)
and leading to a singly threaded complex consisting of one ring
and one “string.”9

The principle of the single threading reaction, based on copper-
(I)9 is represented in Figure 1 as well as that of the presently
reported double threading process. It should be noted that the first
reaction leads to a two-component entanglement, one of the
components being cyclic (a), whereas the second reaction leads to
an entanglement consisting of three components: a ring and two
acyclic fragments (b).

The various ligands used in the “gathering and threading” process
are represented in Figure 2. Some of them have already been
recently described.10,11The key feature of these 3,3′-biisoquinoline-
based ligands is their endotopic or endocyclic nature combined with
their nonsterically hindering nature.12aThe 3,3′-biisoquinoline (biiq)
backbone is such that the two aromatic groups introduced at the 8
and 8′ positions (8,8′-diphenyl-3,3′-biisoquinoline) dpbiiq) are
sufficiently remote from the coordination site so as not to sterically
interfere with it or do it in a very limited fashion only. Compound
1 has been shown to form octahedral complexes with Fe(II) or Ru-
(II) in high yield.12 Ligand 2 is a modified version of1 but the
adjunction of two azide-functionalized chains will allow post-
threading chemical modifications, toward the synthesis of rotaxanes.

The threading reaction of two equivalents of1 through one
equivalent of3 was carried out in the following way: an CH3CN
solution of Fe(BF4)2‚6H2O (1 equiv) was added to a CH2Cl2 solution
of ring 3 (1.1 equiv) at ambient temperature. Then 2 equiv of1

dissolved in CH2Cl2 was added drop by drop to the mixture. The
workup led to an 82% yield of the three-ligand iron(II) complex
42+ (42+ ) [Fe(3)(1)2]2+, Figure 3) as a red solid (PF6

- salt).
Following exactly the same procedure with2 instead of1, the
threaded compound [52+][PF6]2 (52+ ) [Fe(3)(2)2]2+) was prepared
in 80% yield. To check whether Fe(II) complexes of the present
family resist organic chemical reactions, we investigated the “click”
chemistry13 applied to end-functionalization of the two threads of
complex 52+. [52+][PF6]2 was thus reacted with the propargyl
derivative 6,14 (Figure 3) in presence of copper(II) sulfate and
sodium ascorbate, in a biphasic medium (CH2Cl2/CH3CN/H2O, 10:
0.5:10). The tetratriazole derivative [72+][PF6]2 was obtained in good
yield (94%) after workup and chromatography, as a red solid. It
has been fully characterized by the classical analytical techniques.

The kinetic stability of the complexes obtained is surprisingly
high. Drastic demetalation conditions which lead to fast and

Figure 1. Principle of the threading reactions: (a) copper(I)-induced
threading reactions leading to a [2]prerotaxane and (b) double-threading
reaction driven by coordination of the ligands to an octahedral metal center
such as Fe(II).

Figure 2. The ligands used for the threading reactions.
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quantitative decoordination of the bipy ligands in [Fe(bipy)3]2+

(bipy: 2,2′-bipyridine) are totally inefficient with42+ or 72+.15 This
stabilization originates from metal center protection insured by the
six aryl groups present in the three dpbiiq-chelates. Although they
do not prevent easy formation of octahedral complexes, these six
aromatic nuclei form a remote organic layer12c which strongly
protects the metal center and shields it from potential aggressors.

In conclusion, a double threading principle has been presented
and illustrated by two examples. The compatibility of the here
reported Fe(II) complexes with copper(I)-catalyzed Huisgen 1,3-
dipolar cycloaddition (“click” chemistry, developed by Sharpless,
Medal and their co-workers13) is promising in relation to the
synthesis of two-string [3]rotaxanes. The extremely high kinetic
inertness of the complexes is an interesting property related to the
structure of the dpbiiq ligand.12d The study of other transition
metals16 and the use of the doubly threaded compounds presently
described for generating new rotaxanes and catenanes is in progress.
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Figure 3. Two-string iron(II)-complexes: [3]pseudorotaxane42+,
[3]prerotaxane52+, its stoppered analogue72+, and the stoppering
reagent6.
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